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Summary

The majority of hepatocellular carcinoma occurs over pre-
existing chronic liver diseases that share cirrhosis as an endpoint.
In the last decade, a strong association between lifestyle and
hepatocellular carcinoma has become evident. Abundance of
energy-rich food and sedentary lifestyles have caused metabolic
conditions such as obesity and diabetes mellitus to become glo-
bal epidemics. Obesity and diabetes mellitus are both tightly
linked to non-alcoholic fatty liver disease and also increase hep-
atocellular carcinoma risk independent of cirrhosis. Emerging
data suggest that physical activity not only counteracts obesity,
diabetes mellitus and non-alcoholic fatty liver disease, but also
reduces cancer risk. Physical activity exerts significant anticancer
effects in the absence of metabolic disorders. Here, we present a
systematic review on lifestyles and hepatocellular carcinoma.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Cancers result from the interactions of host features with envi-
ronment factors. Lifestyles, which comprise the habits by which
a person chooses to live, define these interactions. Therefore, life-
styles such as dietary choices, smoking, alcohol consumption and
physical activity have a profound influence on cancer develop-
ment, including hepatocellular carcinoma (HCC). The capacity
to survive famine was one of the strongest selection traits during
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evolution. This changed drastically about 50 years ago with gen-
eralization of a lifestyle characterized by the abundance of food
and lack of exercise. Human physiology has not changed in such
a short period of time. As a consequence, we are maladapted to
our new environment and this maladaptation leads to the epi-
demics of obesity and diabetes mellitus (DM). Obesity has been
consistently associated with a 1.5–4.5 times increase of HCC risk
[1–7]. Even an increase in body mass index (BMI) during
childhood was associated with an elevated risk of HCC during
adulthood [8]. DM was also linked to a 2–3-fold increase of
HCC risk [9–11], independently of the underlying liver disease
[11] and even in lean individuals [12]. Moreover, treating diabetic
patients with insulin and/or insulin sensitizers may further
increase the risk to develop HCC. This highlights how strongly
lifestyles influence the risk of developing HCC.

• The growing epidemic of metabolic conditions such as 
obesity and DM and their close link to NAFLD in turn 
contribute to the increased risk of HCC development 
independent of cirrhosis

• Both human and animal studies have demonstrated an 
inverse association between physical activity and liver 
cancer

• Smoking increases the risk of developing HCC

• Coffee intake is associated with a decreased risk of 
developing HCC

• The molecular mechanisms underlying the effects of 
lifestyles and HCC involve changes in metabolism, 
in particular, the activation of AMPK, changes in the 
immune system and in inflammation

Key points
Smoking

Smoking is associated with the development of several types of
cancers, particularly those arising in organs directly exposed to
smoke. Smoking also increases the risk of developing HCC
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Table 1. Human studies focusing on the effect of smoking on HCC.

[Ref] Design Population Total Conclusions drawn Limitation of study
[14] Case study 110 HCC patients and 42 

patients with metastatic liver 
tumors / intrahepatic stones 
who underwent surgery 
between 1984-1995

152/110 4-aminobiphenyl exposure (result of 
cigarette smoking) plays a role in the 
development of HCC in humans. OR 
= 4.14 (1.15-15.50) and OR = 9.71 
(2.82-34.86) for medium and high 
4-aminobiphenyl-DNA adducts levels 
respectively.

Retrospective case control study, 
no clear definition of smoking, 
information about smoking 
duration/quantity was not available 
for all subjects.

[15] Case control 36,000 adults who died from 
liver cancer (cases) and 
17,000 who died from cirrhosis 
(controls)

53,000/36,000 For men smokers, RR = 1.36 (1.29-
1.43) to die from liver cancer. Looking 
at consumption (cigarettes/day): RR = 
1.5 (1.39-1.62) for 20/day and RR = 1.32 
(1.23-1.41) for 10/days. 
For women smoker RR = 1.17 (1.06-
1.29), RR = 1.45 (1.18-1.79) for 22/day 
and RR = 1.09 (0.94-1.25) for 8/day.

Retrospective study

[16] Prospective 
cohort

63,257 adults aged 45-74 years 
in Singapore

61,321/394 Current vs. never smokers have an 
increased risk of HCC HR = 1.63 
(1.27-2.10) after adjusting for alcohol 
consumption and other cofounders. 
Result was dose-dependent (p <0.001) 
and duration of smoking dependent
(p = 0.002).

Smoke habit evaluated only at 
enrollment

[17] Prospective 
nested
case-control 
study

115 HCC matched with 229 
controls from the European 
Prospective Investigation into 
Cancer and nutrition EPIC 
cohort.

115/229 Smokers have a higher risk to develop 
HCC. OR = 4.55 (1.90- 10.91). Former 
smokers have a higher risk to develop 
HCC. OR = 1.98 (0.90-4.39).

Information about comorbidities 
such as diabetes was not 
available for all subjects, HCC 
treatment was not taken into 
account 

[18] Prospective 
cohort

2273 HCC patients aged 20-75. 2273/2273 Looking at survival after HCC diagnosis, 
HR = 1.20 (1.05-1.37) for current smoker 
and 1.16 (0.98-1.38) for ex-smokers 
compared to never smokers.

Lack of evaluation of interactions 
with other possible factors 
(cirrhosis, diabetes, diet)

[19] Prospective 
cohort

302 patients with HBV infection 
who underwent surgical 
resection for HCC

302/302 Heaving smoking (PY ≥20) was the most 
significant factor associated with HBV-
related HCC recurrence after surgical 
resection (p = 0.001). Median recurrence-
free survival was worse for ex- and 
current-smoker than for non-smoker (24, 
26, 34 months respectively, p = 0.033).

Small number of ex-smoker (n = 
25), tumour burden in that specific 
group was worse than  the other 
groups, Short-term follow-up.

Total column: number of subjects in study/number of subjects with HCC. OR, odds ratio; RR, relative risk; HR, hazard ratio.
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(Table 1). Tobacco smoke contains chemicals that become acti-
vated as carcinogens when metabolized in the liver [13]. A linear
relation between 4-aminobiphenyl-DNA adduct levels in liver tis-
sue and HCC risk was reported, which was also significant after
adjustment for covariates, including hepatitis B surface antigen
status [14]. In a large Chinese retrospective study, smokers had
a higher risk ratio for HCC than nonsmokers; this concerned
males as well as females and the risk correlated with the degree
of cigarette consumption [15]. This was confirmed in two Asian
prospective studies which adjusted for alcohol consumption
[16,17]. Data from the European Prospective Investigation into
Cancer and Nutrition (EPIC) suggested that, in Europe, smoking
contributes to nearly half the cases of HCC, which is actually
more than hepatitis B and C viruses [18]. Moreover, smokers
who underwent HCC resection had a higher rate of recurrence
and liver-specific mortality [19].
Alcohol

Alcohol is linked to HCC via the development of cirrhosis. The
published evidence does not support a role for alcohol as a direct
204 Journal of Hepatology 201
carcinogen for HCC. Alcohol-induced liver disease is one of the
most prevalent causes of cirrhosis and alcohol-induced cirrhosis
is associated with a five-year cumulative risk for HCC of 8%
[20]. The odds ratios for HCC increase linearly with alcohol intake
and are higher in cases of DM or infection with hepatitis B or C
virus [21,22].
Coffee

Since 2002, when a protective effect of coffee against HCC was
first reported [23], epidemiological studies, covering different
geographical areas and different HCC etiologies and with
different designs, have substantiated this observation. Three
meta-analyses comprising studies from Europe and Asia found
a statistically significant association between coffee consumption
and an approximately 40% reduced liver cancer risk [24–26].
Prospective studies confirmed the benefit of coffee consumption.
A prospective cohort that enrolled Finnish male smokers reported
that coffee intake (boiled or filtered) was inversely associated
with incident liver cancer [27]. Comparing high coffee consumers
with low coffee consumers in the EPIC study, Bamia et al. found a
6 vol. 64 j 203–214



Table 2. Human studies focusing on the effects of exercise in the liver.

[Ref] Liver parameter Type of exercise Inclusion of 
diet

Low/high 
intensity

Time 
period

Conclusions drawn Limitations of study

[50] Lipid content   
(n = 23)

Aerobic cycling – Progressively 
increasing 
intensity

4 wk Aerobic exercise reduced  hepatic 
lipids thereby mitigating metabolic and 
cardiovascular consequences of fatty liver

No effects of long-term 
aerobic exercise assessed

[51] Fat accumulation 
(n = 15)

Controlled 
aerobic exercise 
program

– High 12 wk Decreased hepatic fat accumulation 
and thereby potential of fatty liver to 
progress to liver inflammation, fibrosis and 
cirrohosis. 

–

[56] Lipid content 
(n = 15)

Habitual PA – Both – Higher level of PA correlated with lower 
IHF content

Cross-sectional study – no 
assessment of longitudinal
effect; influence of diet on 
lipid content

[65] Free fatty acids
(FFA) (n = 16)

Conditioning 
exercise and 
general PA

– Both – Lower hepatic FFA in more active twins Low cohort number; long-
term study required

[66] Fat content 
(n = 18)

Conditioning 
exercise and 
general PA

– Both – Twins with higher PA had 23% less 
hepatic fat

Low cohort number; long-
term study required

[62] NAFLD
(n = 813)

Assorted 
(aerobic, leisure
PA)

– Moderate, 
High

– Exercise intensity (vigorous) was 
inversely associated with decreased risk 
of developing NAFLD, NASH severity and  
fibrosis

Cross-sectional study; 
no establishment of an 
association between 
moderate exercise and 
disease severity

[61] NAFLD 
(n = 19,921)

Patient-reported 
aerobic exercise

– Moderate – Exercise intensity, duration and frequency 
was associated with less insulin 
resistance and decreased risk of NAFLD 
development

Self-reported information; 
cross-sectional study; use of 
ultrasound to diagnose fatty 
liver 

[70] NAFLD (n = 13) Aerobic exercise Normal diet High 
intensity

7 d Short-term exercise decreased circulating 
marker of hepatocyte apoptosis in obese 
NAFLD patients and increased insulin 
sensitivity

Influence of diet; long-term 
effect

[57] NAFLD 
(n = 218)

Cardiorespiratory 
fitness

– Maximal 
treadmill test

– Inverse association between fitness and 
NAFLD prevalence

Lack of serum hepatitis C 
status; cross-sectional study

[67] NAFLD 
(n = 141)

Leisure PA – Low, 
moderate 
intensity

– Increasing PA  significantly improved 
metabolic parameters in people with 
NAFLD

Lack of objective 
measurement of change 
in PA

[63] NAFLD (n = 37) Compared health-related fitness (cardiorespiratory 
fitness, body composition,muscle strength) with general 
PA participation

Suboptimal health-related fitness and 
PA benificial in reducing associated risk 
factors and preventing progression of 
NAFLD

Low cohort number; results 
not generalizable to all 
NAFLD patients
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decreased risk for HCC with a hazard ratio of 0.28 [28]. Finally, a
large, multiethnic, population-based prospective cohort found a
dose-dependent protective effect of coffee intake [29].
Diet

More than specific nutrients, it is the promotion of obesity and
DM by over nutrition and energy-rich diets which increases the
risk of HCC. Two case–control studies from southern Europe
found a positive association between high dietary glycemic load
and HCC among patients with chronic hepatitis B or C virus infec-
tions [30,31]. Although the latter study found that this positive
association was present in patients without chronic hepatitis
infection, this link was weaker and not statistically significant
[31]. There is growing evidence that adherence to a healthy diet
plays a role in delaying HCC development in at-risk populations.
Epidemiological studies have suggested that increased consump-
tion of fruits decreases the risk of HCC [32] and low vegetable
Journal of Hepatology 201
intake was significantly associated with an increased risk of
HCC [33]. An Italian case–control study reported an inverse rela-
tion between intakes of fruits, milk/yoghurt, white meats, eggs
and HCC risk [34]. Higher intake of total dietary fiber and a lower
intake of dietary sugar were associated with decreased risk of
HCC [7]. Finally, the degree of adherence to a ‘‘Mediterranean”
diet was significantly inversely related to HCC risk. Turati et al.
scored adherence to a ‘‘Mediterranean” diet in 518 cases of HCC
and 712 controls from Italy and Greece [35]. They found that
good adherence is associated with a 50% reduction in HCC inci-
dence and that this effect is particularly striking in patients with
a chronic viral hepatitis B or C infection.
Physical activity

Regular exercise reduces the negative consequences associated
with overconsumption of an energy-dense diet, including insulin
resistance, weight gain, and obesity [12,36,37]. The recognition
6 vol. 64 j 203–214 205



Table 2. (continued)

[Ref] Liver parameter Type of exercise Inclusion of 
diet

Low/high 
intensity

Time 
period

Conclusions drawn Limitations of study

[53] NAFLD (n = 375) Assorted PA- 
aerobic;
resistance

Yes Both – Higher rate of PA associated with lower 
NAFLD prevalence

Cross-sectional study ; 
unclear whether resistance 
or aerobic PA more 
beneficial

[52] NAFLD (n = 28) Resistance 
exercise

– – 8 wk Resistance exercise increased insulin 
sensitivity and improved metabolic 
flexibility in NAFLD. 

No assessment of long-
term resistance exercise; 
exclusion of patients with 
fibrosis

[55] NAFLD including 
steatosis (n = 31)

Aerobic exercise Yes High 15 mo    Exercise resulted in sustained 
improvement in liver  enzymes and 
serum insulin levels

Extent of dietary effect

[68] Steatosis and 
chronic hepatitis 
C (n = 19)

Individualized 
exercise regime

Yes-
individualized 
diets

– 3 mo Inverse correlation between weight 
reduction and steatosis/abnormal liver 
enzymes; improvement in fibrosis

Extent of dietary effect; 
long-term studies 

[69] NASH (n = 65) Individualized 
aerobic exercise 
regime

Yes-
individualized 
diets

Moderate-
high intensity

3 mo Moderate exercise normalised 
aminotransferase levels in NASH 
patients

Extent of dietary effect

[71] * HCC patients 
under- going 
hepatectomy 
(n = 51)

Patient-specific 
exercise
program

Patient-
specific daily 
energy in- 
take: 25-30 
kcal/ kg body 
weight

Both 6 mo Exercise group presented no clinical 
problems as well as significant 
improvement in both serum insulin and 
insulin resistance index. 

No patients with advanced 
disease

[123] * Advanced HCC 
(relapsed)
(n = 1)

Aerobic cycling – Progressively 
increasing 
intensity

6 wk Aerobic program increased peak work 
capacity of patient by 20.3% and 
improved quality of life

Results based on one 
individual; larger patient 
cohort required  

[45] * Risk prediction 
study for HCC
(n = 428,584) 
HCC
cases 
(n = 1668)

Patient-reported 
exercise

– Both 8.5 y Correlation between decline in HCC 
risk and degree of physical activity

Additional validation 
of results from other 
populations needed. 
Participants belonged 
to above-average 
socioeconomic status

[46] * Total participants
n = 507,897 
(Liver cancer 
n = 628; 
HCC n = 415)

Patient-reported 
vigorous 
physical activity

– Both 10 y Decreased risk of total liver cancer and 
HCC by 36% and 44%, 
respectively

No data on chronic liver 
disease and hepatitis 
B/C virus infection status. 
Frequency of physical 
activity assessed using 
self-report questionnaire. 
No continuous assessment 
of physical activity status 
during 10-year follow-up

d, days; wk, weeks; mo, months; yr, years; PA, physical activity; FFA, Free fatty acids.
⁄, studies specifically focused on effects of exercise on HCC development.

Review
that physical activity can also prevent cancer has motivated
growing interest in this area of research.

Preventive benefits of exercise (primary prevention)

Epidemiological studies have indicated that physical activity low-
ers the risk of various carcinomas (esophagus, colon, breast, blad-
der, lung, kidney, prostate, pancreas, endometrium and ovary).
While risk reductions seem to be small for endometrial [38]
and prostate cancer [39], a pronounced benefit was shown for
breast [40], colon [41], and lung cancer [42]. Physical activity
may even reduce lung cancer incidence in smokers [43], and
breast cancer risk in BRCA1/2 mutation carriers who are geneti-
cally predisposed to the disease [44], illustrating the powerful
impact of exercise. In a recent prospective study of a large
206 Journal of Hepatology 201
Taiwanese cohort, Wen et al. observed a gradual correlation
between decline in HCC risk and degree of physical activity
[45], an observation which has been duplicated in an NIH study
by Behrens et al. [46]. In terms of primary prophylaxis, HCC asso-
ciated mortality appears to be reduced (relative risk 0.71; 95%
confidence interval [CI] 0.52–0.98) in patients on moderate-to
vigorous-intensity physical activity regimes (>7 h/week) before
the diagnosis of cancer relative to inactive subjects [47].

Benefits of exercise post cancer diagnosis

In addition to its preventive effects, physical activity also favor-
ably impacts on outcomes following cancer diagnosis. Mounting
evidence indicates an improved quality of life, a decreased risk
of recurrence, and up to 50% reduced risk of cancer-related
6 vol. 64 j 203–214



Table 3. The effect of exercise in animal models predisposed to liver pathologies.

[Ref]  Liver 
condition

Animal 
model

Inclusion 
of diet

Type of 
exercise

Forced or 
voluntary 
exercise

Low/high 
intensity

Time 
period

Conclusions drawn Limitations

[39] NAFLD KK/Ta  
and 
BALB/c
mice

High 
sucrose 
diet

Treadmill 
running  

Forced Progressively 
increased

12 wk Exercise prevents fatty liver 
and subsequent NAFLD 
development by improving 
hepatic lipid metabolism

Mechanism underlying 
the inhibitory effect of 
exercise remains unclear; 
not considered if exercise 
prevented necroinflammation 
and fibrosis 

[73] NAFLD C57BL/6 
mice

High fat/
standard 
chow

Swimming Forced Progressively 
increased

10 wk Swimming improved fat 
oxidation and significantly 
reduced liver steatosis
Reduction in all severe 
features of NAFLD

Mice of study demonstrate high 
levels of HDL-C which does 
not portray model of human 
metabolic syndrome; Role of 
exercise in increasing plasma 
adiponectin is unclear 

[77] NAFLD OLETF
rats

Normal 
and 
restricted 
diet

Running 
wheel

Voluntary  – 4-40 wk of 
age

Attenuated NAFLD 
development on daily 
exercise; more effective than 
restricted diet

Reason unknown for  exercised 
animals to remain hyperphagic 
while calorie restricted 
diet animals demonstrated 
upregulated lipogenesis

[72] Onset of 
steatosis

Rats High fat/
standard 
chow

Treadmill 
running  

Forced Progressively 
increased

Midpoint 
of 16-wk 
experiment

Exercise training significantly 
decreased fat accumulation, 
triacylglycerol, plasma 
nonesterified fattyacids, and 
leptin concentrations

Liver lipid infiltration did not 
progress linearly over 16 weeks 
of HFD

[76] Onset of 
steatosis

Sprague-
Dawley®

rats

High fat/
standard 
chow

Treadmill 
running  

Forced Progressively 
increased

8 wk Complete prevention of 
steatosis

Hepatic insulin sensitivity 
was not determined; plasma 
β-hydroxybutyrate levels 
remained unaltered by exercise 
training

[75] Onset of 
steatosis

OLETF
rats

– Running 
wheel

Voluntary  – 16 wk Exercise training attenuates 
the progression of hepatic 
steatosis in OLETF rats

Wheel running did not seem 
to increase  alter AMPKα or 
AMPK phosphorylation status 
nor specific enzymatic activity 
or increased mitochondrial 
content in the liver

[84] Onset of 
steatosis

Mice High fat/
standard 
chow

Treadmill 
running  

Forced Progressively 
increased

8 wk Exercise effectively decreased 
sFREBP-1c, FAS and 
SCD1 expressions while 
promoting increased ACC 
phosphorylation and CPT1 
expression. Exercise reduced 
the total hepatic lipids and 
reversed the hepatic steatosis 
in obese mice.

The mechanism underlying 
exercise mediated decrease of 
SREBP-1c and FAS remains 
unclear

JOURNAL OF HEPATOLOGY
mortality in physically active breast, prostate or colorectal cancer
survivors compared with their less active peers. In men diag-
nosed with early prostate cancer, regular vigorous-intensity exer-
cise (P3 h/week) was associated with a 61% and 57% decreased
risk of cancer-specific mortality and progression, respectively
[48,49]. As for liver cancer, one can consider the beneficial effects
of lifestyle changes in patients with cirrhosis as secondary pre-
vention. At the level of tertiary prevention, there is presently
no evidence that exercise decreases HCC recurrence.

Hepatic effects of exercise

The benefits of physical activity have been consistently observed
in a number of studies that are summarized in Table 2. Regular
physical activity reduces steatosis and improves insulin sensitiv-
ity even in the absence of weight loss [50–58]. Exercise improves
Journal of Hepatology 201
adipocytic insulin sensitivity, reducing the flow of fatty acids to
the liver irrespective of BMI [59–61]. Correspondingly, elevated
physical activity is inversely associated with the onset of
non-alcoholic fatty liver disease (NAFLD) and non-alcoholic
steatohepatitis (NASH) [53,56,57,62–70]. Although currently
speculative, the increased energy expenditure should further
mitigate the procarcinogenic features of lipotoxicity and excess
lipids, while improved insulin sensitivity should counteract the
glucose-addicted phenotype of cancer cells. Kaibori et al.
observed greater loss of body fat through exercise compared with
dietary modification in a cohort of HCC patients, with insulin
sensitivity improving only in the group with the highest exercise
intensity [71].

Experimental data regarding the impact of exercise on the
livers of diet-induced animal models predisposed to NAFLD,
NASH, and HCC are summarized in Table 3. Despite the
6 vol. 64 j 203–214 207



Table 3. (continued)

[Ref]  Liver 
condition

Animal model Inclusion 
of diet

Type of 
exercise

Forced or 
voluntary 
exercise

Low/high 
intensity

Time 
period

Conclusions drawn Limitations

[78] Onset of 
steatosis

OLETF
rats

– Running 
wheel

Voluntary  – Wheels 
were 
locked 
for last 
4 wk of 
experiment

While ceasing of 
PA did not result in 
complete loss of PA- 
induced benefits like 
decreased serum lipids, 
markers for lipogenesis 
(SREBP-1, ACC, 
FAS and SCD-1), it 
caused development 
of steatosis and loss 
of markers of hepatic 
mitochondrial function 
(palmitate oxidation, 
citrate synthase and 
β-HAD)

Exercised animals 
remain hyperphagic; 
tissue specific changes 
in liver and adipose 
tissue were not noted

[80] NASH Rats High fat/
standard 
chow

Swimming Forced Progressively 
increased

12 wk Exercised HFD 
rats demonstrated 
decreased 
hepatopathologic 
manifestations 
of steatosis and 
inflammation. The 
serum and liver 
parameters measured 
were decreased

Serum AST in high-fat 
trained rats remained 
unaltered

   * ]97[ Liver 
carcinogenesis

AlbCrePtenflox/flox Standard 
10% fat 
chow

Treadmill 
running          

Forced Progressively
increased

32 wk Exercised mice 
showed decreased 
incidences of tumor 
development (71% 
vs. 100%), decreased 
mean number and 
total volume of tumor 
nodules.        

Beneficial effect of 
exercise on tumor 
development was 
independent of 
improvement of steatosis 
and NASH lesions 

   * ]47[ Liver 
carcinogenesis

Wistar rats High fat/
low fat 
chow

Swimming Forced Progressively 
increased

8 wk Exercise 
postconditioning 
attenuated liver 
carcinogenesis under 
adequate low fat dietary 
regimen 

Effect of exercise seems 
to be dependent on 
low fat diet, effect with 
control diet was not 
tested.

OLETF, OtsukaLong-Evans Tokushima Fatty; d, days; wk, weeks; mo, months; yr, years; HFD, high fat diet; AMPKa, AMP-activated protein kinase-a.
⁄, studies specifically focused on effects of exercise on HCC development.
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heterogeneity of the experimental set-ups (particularly the com-
position of diets), the sum of evidence confirms the beneficial
effects of exercising. Exercise programs improved adipose mass,
steatosis, insulin resistance, inflammation or other parameters
associated with the metabolic syndromes, which may also be
improved when exercise is introduced midway through a high-
fat diet regimen [72–75], [76]. When comparing exercise with
calorie restriction, Rector et al. noted elevated mitochondrial
b-oxidation, oxidative enzyme function, improved glucose
tolerance, and suppression of hepatic de novo lipogenesis in the
exercise group, providing support to the claim that exercise has
effects superior to those of dietary modification [77]. Interest-
ingly, halting exercise for short periods (7 days) does not appear
to hamper its benefits, although longer interruptions (4 weeks)
caused deterioration of the overall metabolic phenotype in
hyperphagic rats [78]. In a genetic mouse model of NASH-
induced HCC, regular exercise had a positive effect in delaying
the onset of HCC [79].
208 Journal of Hepatology 201
Molecular mechanisms

Lifestyles, in particular exercise, affect several aspects of hepato-
carcinogenesis. They modify the metabolism, influence the
immune system and affect inflammation (Fig. 1).

Metabolic programming

Exercise reduces the cellular ATP:AMP ratio and hereby activates
AMP-activated protein kinase (AMPK). AMPK inhibits mam-
malian target of rapamycin complex 1 (mTORC1) and activates
peroxisome proliferator-activated receptor-a (PPARa) [80,81]
(Fig. 2). mTORC1 is a key metabolic growth promoter, which in si-
tuations of nutrient and insulin availability activates sterol regu-
latory element-binding protein (SREBP), a transcription factor
which controls the expression of lipogenic genes such as fatty
acid synthase (FAS) [82]. In contrast, PPARa induces genes
required for b-oxidation including carnitine palmitoyltransferase
6 vol. 64 j 203–214
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Fig. 1. Schematic representation of the beneficial cirrhosis-independent effects of exercise in liver cancer. Excess calories lead to lipid accumulation in hepatocytes,
mainly due to increased lipogenesis, reduced b-oxidation, and import of fatty acids from adipose tissue. Excess lipids induce lipotoxicity, with ER stress being tightly linked
to the development of insulin resistance and inflammation. Deregulated adipokine signalling from adipose tissue additionally promotes inflammatory conditions and
insulin resistance in liver. The resulting hyperinsulinemia and hyperglycemia are important drivers of malignancy and increase the HCC risk, together with other processes
induced by caloric overload. These include reduced blood perfusion or inflammatory/oncogenic signals from altered gut microbiota composition. By increasing calorie
expenditure, physical activity counteracts the procancerous consequences of excess calories. In addition, exercise inhibits HCC development and progression through a
number of processes (blue) that are independent of caloric overload and comprise improved perfusion and immune function, metabolic alterations (e.g. increased b-
oxidation at the expense of glycolysis), activation of tumor suppressors, and a general amelioration in systemic inflammation and insulin resistance. These processes reduce
cancer risk in nonobese individuals also. Although many organs are affected by exercise, the main contribution to insulin sensitivity and antiinflammatory conditions is
believed to originate from muscle – the prime target of exercise. Akt, protein kinase B; AMPK, AMP-activated protein kinase; HCC, hepatocellular carcinoma; ER,
endoplasmic reticulum; IGF, insulin growth factor; IGFR, IGR receptor; IL-6, interleukin-6; INSR, insulin substrate receptor; MAPK, mitogen-activated protein kinase; mTOR,
mammalian target of rapamycin; mTORC1, mTOR complex 1; NK, natural killer; NRF2, nuclear factor erythroid 2-related factor; PTEN, phosphatase and tensin homolog
deleted on chromosome 10; ROS, reactive oxygen species; STAT3, signal transducer and activator of transcription-3; TNF, tumor necrosis factor.
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I (CPT1) [39,83–85]. mTORC1 stimulates glutamate dehydroge-
nase (GDH), possibly via the downregulation of sirtuin 4 (SIRT4)
[86,87]. GDH converts glutamine to a-ketoglutarate, which
enters the tricarboxylic acid (TCA) cycle for ATP generation
[88]. In muscle, exercise downregulates SIRT4; this releases its
Journal of Hepatology 201
inhibitory effects on malonyl-CoA decarboxylase (MCD) resulting
in reduced levels of malonyl-CoA, an inhibitor of b-oxidation [89–
91]. It remains to be investigated whether exercise has similar
effects in the liver and to what extent they occur in HCC. Wang
et al. reported reduced expression of SIRT4 in HCC samples
6 vol. 64 j 203–214 209
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[92]. In HCC, decreased AMPK activity has been associated with
poor outcome and AMPK activation-induced apoptosis [93]. Like-
wise, mTORC1 activity has been suggested to regulate lipogenesis
in hepatocarcinogenesis, with the lipogenic phenotype of HCC
cells correlating to clinical aggressiveness [94]. Hence exercise
could counteract HCC risk/progression in part by upregulating
AMPK and downregulating mTORC1.

Interestingly, the exercise-induced changes in AMPK/Akt-
mTORC1 do not require the presence of obesity/DM, indicating
an independent effect of exercise on HCC inhibition [80]. Both
calorie restriction and exercise have been shown to indepen-
dently lower circulating insulin and insulin growth factor 1
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(IGF-1) levels [95] which, apart from generally dampening
PI3K-Akt-mTOR activities [81,96] may also play a role in prevent-
ing the initiation and propagation of malignant tumors in the
liver [97].

Immune system

Exercise is known to have immunostimulatory effects in cancer
patients; however, no study has yet addressed this in HCC
patients. In breast cancer survivors, regular exercise increased
the percentage of CD4(+)CD69(+) cells and increased DNA syn-
thesis after stimulation of these cells [98]. Circulating natural
6 vol. 64 j 203–214
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killer (NK) cells have key functions in the immunological defense
against cancer. Brief bouts of exercise seem to be sufficient to
increase the number of circulating NK cells by 4–5-fold, at least
in young healthy adults [99]. Experimentally, exercise may
induce relatively long-lasting changes in NK cells, with elevations
sustained for up to three weeks following cessation of exercise in
mice. Furthermore, these exercised animals developed resistance
to lung tumor formation compared with sedentary controls [100].
Significant differences in T cell proliferation between sedentary
and exercised tumor-bearing rats have been reported, with the
latter demonstrating higher macrophage cytotoxic antitumor
action [101].

Inflammation

Experimental models of diet-induced and genetic-induced obe-
sity promote low-grade hepatic inflammation, which leads to
the development of HCCs [102]. HCC progression was reversed
when the hepatic inflammation was reduced by deletion of
interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a).
Clinically, modification of diet has been shown to reduce inflam-
mation. A study with obese individuals reported an association
between caloric-restricted weight reduction and decreased
plasma C-reactive protein levels [103]. Different diets were able
to decrease IL-6 levels as long as weight loss was achieved
[104]. Physical activity also reduces systemic inflammation,
either directly or in combination with weight loss [105]. Even
in low-intensity exercise groups of cancer patients, decreased
levels of oxidative DNA damage have been observed [106]. The
nuclear factor erythroid 2-related factor (NRF2) system is likely
to provide an important contribution to the antioxidative proper-
ties of exercising; the increased production of reactive oxygen
species during exercise leads to NRF2 activation, which in turn
activates a number of antioxidant enzymes [107]. Exercise
primed against exercise-unrelated oxidative stress and signifi-
cantly blunted carcinogenic stimuli [80,106–114]. Physical inter-
vention programs can reduce serum IL-6 levels independently of
BMI and DM in men [115,116]. In healthy adults, high-intensity
training reduces responses of blood cells to TNF-a [111], while
moderate exercise in cancer patients alters inflammatory cyto-
kine responses [113].

Physical activity may dampen inflammatory states by
decreasing the circulating levels of proinflammatory cytokines
such as leptin and IGF-1 levels [95,117]. In rats bearing mammary
tumors, both calorie restriction and/or voluntary exercise
decreased serum insulin, IGF-1, and tumor burden, along with
Akt pathway downregulation and increased AMPK activity in
tumors as well as in other tissues such as liver [80,81]. Exercise
reduces circulating leptin levels independent of metabolic condi-
tions [109,118]. Leptin opposes the beneficial effects of adiponec-
tin and AMPK in cancer patients, extending its role beyond
proinflammatory signaling [118,119]. Experimental studies
observed that impairment of leptin signal transduction mediated
by Janus-activated kinase-2 (JAK-2) and the mitogen-activated
protein kinase (MAPK) pathway occurs specifically in fructose-
fed rats but not in glucose-fed rats [120,121].

Diet and/or genetic obesity also induces alterations of gut
microbiota, resulting in increased levels of deoxycholic acid
(DCA), a gut bacterial metabolite known to cause DNA
damage. Enterohepatic circulation of DCA provokes senescence-
associated secretory phenotype (SASP) in hepatic stellate cells
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(HSC), which in turn secrete various inflammatory and tumor-
promoting factors. Yoshimoto et al. reported that SASP promoted
obesity-associated HCC development in mice [122]. Subsequent
blocking of DCA production or decreasing gut bacteria efficiently
prevented HCC development in obese mice. Mice lacking SASP
inducers or depleted of senescent HSCs also showed similar
results, indicating that the DCA-SASP axis in HSCs plays a key role
in obesity-associated HCC development [122].
Conclusion

The preventive and therapeutic impact of lifestyle on cancer is
remarkable and its exploitation should be further promoted.
HCC is a cancer tightly linked to lifestyle. We need multicenter,
prospective studies on large patient cohorts with different levels
of intervention. We further need more detailed experimental
studies on signaling pathways involved in liver carcinogenesis
that may be negatively or positively modified by lifestyles. The
implementation of policies favoring the adoption of healthier
lifestyles should be an integral part of our efforts against HCC.
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